PRESERVING INTRA-PATIENT VARIANCE IMPROVES PHYLOGENETIC INFERENCE OF HIV TRANSMISSION

AUGUST GUANG

acknowledgments

My CFAR Research Group:

Casey Dunn, Associate Professor of Evolutionary Biology

Rami Kantor, Associate Professor of Medicine

Mia Coetzer, Assistant Professor of Medicine

Mark Howison, Director of Data Science

My DunnLab Research Group:

Casey Dunn (again)

Zachary Lewis, Postdoc

Catriona Munro, PhD Candidate

Alex Damian Serrano, PhD Candidate

Colin MacLean, Research Programmer & Charles Lawrence, Professor of Applied Mathematics

TRANSMISSION NETWORKS AS PHYLOGENIES

in the absence of reliable patient contact histories, phylogenies can be proxies for transmission networks

in the absence of reliable patient contact histories, phylogenies can be proxies for transmission networks

the phylogenetic workflow

- D: Data: reads
- ▶G: Genomes
- M: Multiple sequence alignment
- T: Transmission tree

we assume the tips of these trees are single entities

but with rare exceptions they are summaries

this is not an issue if we suspect that the variation can be summarized by the mode, i.e. consensus genome

but is it an issue if it cant?

after all, we ultimately care about the transmission tree...

PRESERVING INTRA-PATIENT VARIATION IS IMPORTANT

a simple thought experiment

under consensus

some simple simulations

so we don't recover the same tree...

let's try to account for that variation!

profile Hidden Markov Models

indels are hidden states

indels are hidden states

we can build read profiles from read alignments

sample genomes from those profiles

```
A1 ACAATGACAATGGCAA
A2 ACATGAAATGGCAA
B1 TATGAAATGGCAA
B2 TCATGACATGGCA
C1 TATGACAATGGCAA
C2 TCATGACATGGCA
```

and build alignments and trees with those samples

```
A1 ACAATGACAATGGCAA
B1 T A TGACAATGGCAA
C1 T A TGACAATGGCAA
```

A2 ACATG A ACTGGCA
B2 TCATG A ACTGGCA
C2 TCATG A ACTGGCA

each step in this workflow is a high-dimensional inference problem...

- D->G: HMMer
- ▶G->M: mafft

M->T: RAxML or MrBayes

HIV DATASET

- Individuals newly-diagnosed with HIV in 2013
- Knew transmission history for 5 individuals
- Ran consensus approach; synthetic approach with 10 sequences/individual (collapsed tree); 100 runs of synthetic approach with 1 sequence/individual
- Computed Robinson-Foulds distance between trees from all approaches and performed Multidimensional Scaling

TRANSMISSIM (SIMULATED TRANSMISSION NETWORKS, PHYLOGENIES, GENOMES, READS)

a generative model of patient reads from transmission events

- N: Transmission network
- T: Transmission tree
- V: Viral phylogeny
- G: Genomes
- D: Data: reads

a generative model of patient reads from transmission events

- N: outbreaker
- T: binary mapping
- V: SimPhy
- G: pyvolve
- D: ART

bootstrap results on simulations

WHY BLUE WATERS?

- 1. 10,000 node hours: Create MDS density plot with 10,000 trees to look for conclusive regions of variation
- remaining node hours: additional simulations for validation with parameter sweeps

BLUE WATERS PRODUCTS

- Reproducible manuscript and figures: https://bitbucket.org/aguang/ms_hiv
- Transmissim: https://github.com/aguang/transmissim

acknowledgments

My CFAR Research Group:

Casey Dunn, Associate Professor of Evolutionary Biology

Rami Kantor, Associate Professor of Medicine

Mia Coetzer, Assistant Professor of Medicine

Mark Howison, Director of Data Science

My DunnLab Research Group:

Casey Dunn (again)

Zachary Lewis, Postdoc

Catriona Munro, PhD Candidate

Alex Damian Serrano, PhD Candidate

Colin MacLean, Research Programmer & Charles Lawrence, Professor of Applied Mathematics

a. Whole-genome NGS reads for Patient 1

Read1 ATGGCATATGGAGCATGATGGC
Read2 TGATGCATCGCTGATGCCATAT
Read3 TGGATGCATCGCTGATGGCATA

b. HMMER alignment to reference pHMM

C. HMMER re-alignment to Patient 1 pHMM

```
Read1 -----ATGGCATATGGAGCATGATGGC Additional
Read2 TG-ATGCATCGCTGATGCCATAT----- sensitivity in
Read3 TGGATGCATCGCTGATGGCATA----- re-alignment
```

d. Summary sequences for Patient 1 pHMM

```
Consensus TG-ATGCATCGCTGATGGCATAT----- Majority-rule
Synthetic1 T--ATGCATCGCTGATGGCATAT--A----A---C
Synthetic2 -GGATG--TCGCTGATGCCATAT----C-TGA----
```

under certain assumptions, transmission networks have a surjective mapping to a phylogeny (transmission tree)

however, the mapping is not injective and thus not one-to-one

Consensus Bootstrap Support

our "synthetic" approach

some simple simulations

RAxML tree from consensus genome

true tree

so we don't recover the same tree...

Kmeans clustering of ML trees from synthetic sequences and ML tree from consensus alignment

